ORA TM-96-0019 12 April 1996

Final Report

David Guaspari

N00014-95-C-0349

CDRL A002
Prepared for: Prepared by:
Program Manager, Ralph F. Wachter David Guaspari
ONR 311 Odyssey Research Associates, Inc.
800 North Quincy Street 301 Dates Drive
Arlington, VA 2221705660 Ithaca, NY 14850-1326

(607) 277-2020

. DISTRIBUTION STATEMENT &
0 91 2 1 52 Approved for public release; ‘}

Distribution Unlimited

1 Introduction

Formal methods research has developed a variety of mathematical tools
and techniques applicable to the development of software systems, but they
are greatly underused. The reasons, as documented in a careful survey of
industrial applications of formal methods [2], include

e the limited mathematical backgrounds of many end-users and devel-
opers;

e support tools that are not of professional quality—fragile prototypes
with poor interfaces and idiosyncratic notations;

e lack of attention to technology transfer—in particular, to reducing
the risks and increasing the rewards of introducing formal methods
techniques.

Different tools require different degrees of training and skill, and apply-
ing them requires different investments in time and effort. A large payoff
would result from a formal methods interface (FMI) enabling different kinds
of users, with different degrees of expertise, to cooperate in applying formal
methods to define, explore, and analyze system designs and specifications.
The payoff can be increased by exploiting the formal analysis for other pur-
poses as well—for example, by generating documentation and code directly
from formal models.

Devising an FMI therefore requires more than a technique for putting a
modern interface, however good, on an interactive theorem prover. In the
near- and medium-term, the greatest practical benefits will result from in-
creasing the use of special purpose “low-end” or “lightweight” formal analy-
sis through an interface that shields users from a Babel of differing notations
and semantic models.

1.1 Lightweight analysis

Here is the form of lightweight analysis that our prototype FMI provides:
Systems will be modeled in RSML, a mixed graphical and textual notation
for defining state machines. Experience has shown that the RSML notation
is accessible to end-users, engineers, and software developers. (There is a
role here for expert consultants in how to read and write such specifications.)

The FMI provides a pushbutton way to select semantic questions about
an RSML specification from predefined menu—e.g., the question of whether

Anmalysis e,
)
Tools Specification |
menu :
H
_____________ i
Internal Formal H
interface Methods Lighweight ¢ .

+ <—= Users’ view

Interface menu :

Code/Doc
generation

Figure 1: The lightweight FMI

the specified state machine can respond to every input. Our prototype
generates a representation of each question within the formalism of various
formal analysis tools (the EVES and PVS theorem provers, and the SPIN
model checker) and permits the user to invoke those formal tools in an
attempt to answer it automatically. ‘
Integrating a tool with the FMI means providing, or automatically gener-
ating, some combination of theories, tactics, heuristics, decision procedures,
etc., that give the tool a reasonable chance of answering some or all of the
questions automatically. The result of the automated analysis may be a
simple yes or noj or it may rephrase the problem in simpler terms that can
be the basis for informal engineering judgements. If the automated analy-
sis is insufficient, a more expert user of the analysis tools can apply them
directly, in interactive mode. (There is a role here for consultants expert in
using particular tools.)
Our goal is adapt tools to users (instead of the reverse)—reducing the
entry costs and increasing the payoff from applying formal methods.
Figure 1 shows the role of the FMI as mediator between users and anal-
ysis tools, presenting both a unified view of the system under development
and the ability to study that system directly within the formalism of one of
the component tools.

1.2 Expert analysis

Phase I work has concentrated on a framework for lightweight analysis. We
can also use the FMI to access more powerful features of the analysis tools.
The state machine model provides a common semantic framework through

which different analysis tools can share their results. The FMI can, in ef-
fect, manage a theorem-proving session for a specialized top-level assertion
language about our form of state machine model: invoking an analysis tool
amounts to carrying out a special kind of proof step in that theorem prover.
The FMI would maintain a database (not explicitly represented in figure 1)
keeping track not only of the facts established, but of the justification for
each fact. This database would help the user visualize the logical organi-
zation of the analysis, and help reestablish the consistency of the analysis
after changes. Such a database would be integrated with ordinary project
management tools that do workflow scheduling, configuration control, etc.
Research on these extensions is deferred to to Phase II.

1.3 Relation to other FMI projects

Our work on the underlying logic of an FMI is complementary to attempts to
improve direct interactions with theorem provers and model checkers—and
thus may well be complementary to other Phase I FMI projects.

1.4 Summary of results

In Phase I, we have accomplished the following;:

We have chosen RSML (the Requirements State Machine Language) as a
first draft of our state machine model and, in collaboration with the designers
of RSML, have developed a more precise description of its semantics. Some
of the remaining semantic questions and some further semantic developments
are discussed in section 9.

We have devised general strategies for encoding the semantics of RSML
features in formal analysis tools. We have prototyped code for a “logical
interface” that made it possible to model these features rapidly in the EVES
and PVS theorem provers and the SPIN model-checker. This code was
developed by customizing certain predefined templates.

Little effort has been devoted to applying the prototype models, but we
have have learned some things about the possible benefits of integrating each
of the tools, their limitations, and developing a complete tool that would
exploit them more effectively.

1.5 Organization of this report

This draft report is organized as follows:

o Section 2 describes the top-level notation, RSML.

e Section 3 describes RSML semantics and the lightweight analysis prob-
lems we are concerned with in Phase L.

e Section 4 describes the notion of a logical interface with RSML—
essentially, a general strategy for modeling RSML concepts within
typical analysis tools.

e Section 5 describes the internal interface to RSML—the customizable
template for integrating analysis tools.

e Section 6 summarizes the results of Phase I and describes some “min-
imal paths” for turning this exploratory work into a useful product.

e Section 7 shows a sample encoding of a fragment of RSML semantics
into an EVES theory.

e Section 8 shows a sample encoding of a fragment of RSML semantics
as a SPIN model.

e Section 9 discusses some further questions in RSML semantics.

o There are also two attachments: the prototype code and its documen-
tation; a paper by Nancy Leveson and Mats Heimdahl about RSML
semantics, “Completeness and consistency in hierarchical state-based
requirements”

2 Top-level notation

We see little value in performing FMI experiments with a toy specification
language, so our first requirement for a top-level notation is that it be ap-
plicable to the demands of real-world projects. We have considered three
closely related formalisms for describing state machines: StateCharts [5],
which pioneered the basic ideas of graphic notations for hierarchical state
machines; and two of its descendants, the ROOM modeling language [11]
and RSML [9]. All have been applied to substantial practical problems.
This section briefly explains our reasons for choosing RSML.

2.1 RSML

From our point of view the principal virtue of RSML (the Requirements
State Machine Language) is its practical origin as a lingua franca among all
parties to the design of the complex TCAS II system, the airborne system
that provides collision-warnings to commercial aircraft. The interested par-
ties included pilots, engineers, outside examiners, and software developers.

RSML specifications are representable in two interchangeable formats—
as (human-readable) ascii text, and as hypertext that mixes graphics and
tabular notations. Thea ascii representation can easily be exploited to pro-
vide a simple interface to other tools. Detailed choices in the design of the
RSML notation—for example, the decision to represent propositional formu-
las in tabular format rather than more conventional logical notation—were
guided by experiences with the TCAS II project, a source of “human factors”
experience that this project can hardly hope to improve on.

RSML has a formally definable semantics, though some design choices
are still open and published formal descriptions have not been completely
precise. We have collaborated with Mats Heimdahl, of the University of
Michigan, to improve the semantic description. (As noted in section 9,
some semantic questions remain.) The design of RSML has devoted con-
siderable thought to the trade-offs between expressiveness and analyzability,
and to identifying properties of RSML specifications for which formal analy-

sis seems tractable. We adopt (a subset of) these already-identified analysis -

questions as our initial list of menu options for the lightweight FML

Finally, it is easy to experiment with RSML because its developers have
generously provided us with the source code for their prototype front-end.

The body of this report will describe features of RSML as needed. A
detailed description and an account of its use on TCAS II can be found in [9],
and we have included as an appendix a paper on the semantic analysis of
RSML [8].

We leave open the possibility of extending RSML to exploit opportunities
not considered in the original design—opportunities opened up by integrat-
ing automated theorem provers and model checkers. For example, RSML
specifications define pure finite-state machines (with inputs and outputs).
So, for example, a counter must be modeled not by an internal variable, but
by adding an internal state for each possible counter value. Formulating in-
variants on such local variables is a powerful and well understood technique
for specification and analysis, and the availability of theorem-provers and
model-checkers provides an opportunity to automate some of that analysis.

2.2 ROOM and StateCharts

The ROOM (Real-time Object Oriented Modeling) language adds object-
oriented features to the hierarchical state-machine notation of StateCharts.
It is supported by a commercial tool, ObjecTime, aimed at developers of
real-time systems. This tool provides simulation and code generation, as well
as a highly professional interface in which large amounts of information (the
communications interfaces between state-machine modules, the transitions
of individual state-machines, the object hierarchy, etc.) are hyperlinked.
The developers of ObjecTime generously allowed us to attend one of their
week-long training sessions.

ROOM permits local variables that maintain state information (poten-
tially a good thing) but also permits a model to define the effect of a state
machine transition by the execution of an arbitrary piece of C++ code.
From our point of view that is a fatal permission, as it leaves ROOM with-
out a mathematically defined semantics. (The semantics is well-defined in
the sense of being defined by the action of the ObjecTime simulator, but
there is no mathematical definition of that behavior.)

StateCharts is supported by the commercial product StateMate, which
provides simulation, code generation, and dynamic testing. StateCharts has
a mathematical semantics. It provides a richer language than RSML and,
as a result, static formal analysis seems likely to be more difficult. It seems
fair to say that RSML is more narrowly aimed at safety-critical applications
and at developers willing to accept a more constrained style of specification
and implementation, while StateCharts is a more general-purpose language
for modeling reactive systems.

3 RSML semantics

This section contains a brief description of the heart of RSML, the notions
of hierarchical states and transitions.

3.1 Hierarchical states

The global state of an RSML machine consists of a history of its inputs,
a history of its outputs, and a configuration. The configuration is a set of
(local) states that is consistent with the state hierarchy.

Figure 2 contains shows a graphical representation that includes the
state hierarchy and a collection of arrows representing local transitions be-

[Rod_Control

ShutDown

Ooff

JustMoved1

Upl

JustMoved2
N

Up2

Y

OkToMovel

Y

\ OkToMove2

Figure 2: Graphical display of state machine

tween states. The text fragment describing this state hierarchy (though not
describing the arrows) is given in figure 3.

In figures 2 and 3, Rod_Control, 0ff, Shutdown, On, Temp, etc., are the
names of states. The top-level state, Rod_Control is an OR of its three
children, 0ff, Shutdown, and On: to be in state Rod_Control is to be in
precisely one of its children. State On is an AND of its children, Temp, Rod1,
and Rod2: the children name concurrent processes and being in state On
means being in all three of its child states simultaneously. State Rod1 is
in turn an OR-state, so being in Rod1 means being in precisely one of the
states JustMoved1 or OkToMovei. Etc.

Configurations are maximal consistent sets of states, for example:

{Rod_Control, 0ff}

{Rod_Control, On, Temp, HighTemp, Rod1l, OkToMovel, Rod2,
JustMoved2, Up2}

Graphically, AND-states are distinguished from OR-states by making
the background of an OR-state clear and that of an AND-state grey. The
significance of the DEFAULT children of an OR-state is explained below.

3.2 Basic transitions

Basic transitions are represented partly in graphical form (by the arrows
in the figure, which indicate the source and destination of each transition)
and partly in textual and tabular form (where the causes and the effects
of each transition are described). Each basic transition has a single source
state and a single destination state, and represents (among other things) a
local change to the configuration. Transitions of the whole state machine
are defined as combinations of basic transitions.

Thus, the arrow from source On to destination 0ff represents a transition
that exits state On and all of its descendants, and enters state 0ff. The arrow
from Off to On represents a transition that exits state 0ff and enters On, and
here the defaults come into play. (A default state is indicated graphically by
an arrow whose head touches the boundary of the state, and whose tail is not
attached to any state.) For example, if we take the transition represented by
the arrow from Off to On then we must also enter state Rod1, which in turn
means that we must enter precisely one of its child states. Since the arrow
stops at the boundary of On, it doesn’t explicitly specify which child of Rod1
to choose; therefore we enter the default state JustMovedi. The default
state can be defined conditionally, depending on external circumstances,

OR_STATE Rod_Control DEFAULT Off :
ATOMIC Off :
ATOMIC ShutDown :
AND_STATE On :
OR_STATE Temp DEFAULT C :
CONDITIONAL C :
ATOMIC HighTemp :
ATOMIC LowTemp :
END OR_STATE
OR_STATE Rod1l DEFAULT JustMovedi :
OR_STATE JustMovedl DEFAULT Upil :
ATOMIC Up1l :
ATOMIC Downli :
END OR_STATE
ATOMIC OkToMovel :
END OR_STATE
OR_STATE Rod2 DEFAULT OkToMove2 :
OR_STATE JustMoved2 DEFAULT Up2 :
ATOMIC Up2 :
ATOMIC Down2 :
END OR_STATE
ATOMIC OkToMove2 :
END OR_STATE
END AND_STATE
END OR_STATE

Figure 3: Textual display of state hierarchy

and that is the role of the conditional state C, but this detail is not relevant
here. Section 9 discusses the somewhat problematic semantics of conditional
states, and the problem of assigning a meaning to arrows whose head and
tail are attached to states that are remote from one another, such as an
arrow that led directly from 0KToMove2 to Off.

There are two arrows from OkToMovel to Upi. That is, there are two
such basic transitions, with distinct names, which may have different causes
and/or effects. The textual representations of these transitions (labeled
rather arbitrarily t11 and t12) are:

TRANSITION t11 FROM OkToMovel TO Upi :
TRIGGER : TempLow_Event

CONDITION : TRUE

ACTION : Rod1_Up

END TRANSITION

TRANSITION t12 FROM OkToMovel TO Upil :
TRIGGER : TIMEOUT (TIME (Rodi_Down),
Temp_Reading_Timeout)
CONDITION : TABLE
TIME >= PrevTempLate() N
END TABLE
ACTION : Rod1_Up
END TRANSITION

To keep the picture from becoming too cluttered, this text is not displayed
on the graph of states and arrows. Instead, its on-line version is available
through a hyperlink active when the cursor is pointing to the transition.

The definition of a basic transition lists the event necessary to trigger
the transition, the condition that must be true in order for the triggering
event actually to enable the transition, and the action that results if the
transition is taken (a set of generated events). A basic transition may not
be taken unless it is enabled.

The definition of t11 says that it is enabled whenever TempLow_Event
occurs and the condition TRUE is satisfied—i.e., whenever TempLow_Event
occurs. When taken, the transition generates the event Rod1_Up. The defi-
nition of t12 says that it is enabled by the occurrence of a certain timeout
when the condition TIME >= PrevTempLate() also holds; and the result
is again to generate the event Rod1 Up. Transitions may generate internal

10

events (called “state events”) that trigger other basic transitions, or “inter-
face” events that generate external output (not represented here).
The line

TIME >= PrevTempLate() : T

is actually a degenerate representation of a table, in this case a table with
one entry. A more complex table will make things clearer:

CONDITION : TABLE

A : FT;

B : TT ;

C : T .

D . F
END TABLE

Each column of the table represent a single scenario defining a boolean
combination of the formulas 4, ..., D; and the table as a whole represents
the assertion that at least one of these scenarios is true. The two scenarios
are:

e {(not A) and B and C

The three conjuncts of this formula are determined by the table’s first
column: the F opposite A says that, in this scenario, A is false, and
therefore yields the conjunct not A; the T’s opposite B and C assert
that both formulas are true in this scenario, yielding the conjuncts B
and C, respectively; and the . opposite D means that in this scenario
the value of D is irrelevant.

e A and B and (not D)

The conjuncts of this formula are similarly defined by the second col-
umn.

Thus a table defines a boolean combination of the predicates occurring in
its leftmost column.

3.3 ‘Transitions of the RSML machine

The semantics of an RSML machine is defined by saying how the basic tran-
sitions are combined to define the configuration changes and state changes of

11

the whole machine. Notice first that two basic transitions may not be com-
patible with one another. For example, the transition from OkToMove2 to
Up2 is incompatible with the transition from 0kToMove?2 to Down2: we cannot
take both transitions at once, since the states Up2 and Down2 cannot both
be part of the same configuration. On the other hand, any of the basic tran-
sitions within Rod1 are compatible with any of the transitions within Rod2,
since these two states represent concurrent processes. The precise definition
of “compatible” raises some subtle questions, involving both mathematical
problems and design decisions. These are discussed in section 9.

The global transitions of the RSML machine can be defined, somewhat
informally, as follows: Some external event arrives “at the boundary” of
the top-level state Rod_Control. This generates some collection of inter-
nal events, whose occurrence enables certain of the basic transitions. We
choose, nondeterministically, a maximal set of mutually compatible enabled
transitions and then take them all at once, generating a new configuration
and a new set of internal events. This completes the first microstep. These
newly generated events and the new configuration determine once again a
set of enabled transitions; and, as before, we choose a maximal compatible
set of those and take all of them at once, completing the next microstep. We
keep on taking microsteps until no more internal events are generated; and
that concludes the single step of the RSML machine caused by the arrival
of the initial external event. (Execution of the microsteps may also generate
externally visible events, which we are for the present ignoring.) If the se-
quence of microsteps does not terminate, then the RSML machine contains
a semantic error.

We note, but set aside, a few subtle questions. For example, should
effects generated earlier in the sequence of microsteps remain invisible until
the sequence is over, or should they be visible to (and potentially affect)
later microsteps? The answer is a design decision, to be based on practical
considerations.

3.4 Analysis

The paper [9] estimates that the fewer than 200 states in the TCAS II
specification correspond to 10%° configurations. Analysis of a2 model must
therefore avoid generating its entire state space. The paper [8] describes
certain forms of analysis that can be conducted piecewise, such as:

¢ No internal event is ignored—i.e., that every event, in every possible
situation, enables at least one basic transition.

12

e The RSML machine is deterministic. A sufficient, but not necessary,
condition is that in any situation that can arise there is only one max-
imal consistent set of enabled transitions—that is, all enabled transi-
tions are compatible.

e An infinite sequence of microsteps cannot arise.

Current RSML tools apply conservative tests to check these properties,
and more powerful tests based on theorem-proving could be a useful improve-
ment. For example, to check that an internal event is not ignored it suffices
to form the disjunction of all the conditions on all the transitions that the
event triggers and check that this disjunction is equivalent to the formula
“true”. The current RSML tools do this by purely propositional reasoning,
treating conditions like “X > 0” and “X <= 0” as distinct and independent
propositional atoms, and ignoring the logical connections between them. As
a result the tools may generate false warnings, raising the possibility of a
problem when none exists. More sophisticated theorem-proving should be
able to eliminate those.

Another example is the check to rule out an infinite sequence of mi-
crosteps. Current tools generate a directed graph in which the nodes are
events, and an edge leads from e; to ey if and only if a transition triggered
by e; can generate ez as one of its actions. A sufficient, but not necessary,
condition for ruling out infinite sequences of microsteps is that this graph
be acyclic. Again, we should be able to harness theorem-proving to provide
a more accurate test.

4 Logical interface

By a “logical interface” to RSML we mean an encoding of the information
in an RSML specification so that it can be exploited by theorem provers or
other analysis tools to answer questions of interest.

We first provide two examples:

e a strategy for encoding the state hierarchy
e the table of compatible transitions

and then discuss general requirements for defining a useful logical interface.

13

4.1 Encoding hierarchical states

Consider the state hierarchy defined in figures 2 and 3.

Conditions on transitions may contain assertions of the form “the cur-
rent configuration contains state On”—which we’ll abbreviate for now as
“in_state(0On).” Theorem provers will be called on to reason about propo-
sitions containing instances of the in_state predicate. We could model
in_state explicitly by first defining the set of all configurations; then defin-
ing in_state in terms of the model of configurations; and so on.

That would be a terrible decision. It is possible to model the logical
relations among the in_state assertions about configurations without hav-
ing to model the configurations themselves. We first associate each state
with a boolean constant (for which we’ll use the same name). Thus we de-
clare boolean constants Rod_Control, 0ff, ShutDown, etc. Intuitively, we
use the constant 0ff to represent the assertion in_state(0£ff), etc. The re-
lations among the in_state propositions are captured by axioms expressing
relations among these constants. For example:

Being in the AND-state On means being in all three of its children. We
an express this with an “and-parent” axiom

On -> Temp and Rodl and Rod2

Being in the OR-state Rod_Control requires being in exactly one of its
children, which is expressible by the combination of an “or-parent” axiom

Rod_Control -> 0ff or ShutDown or On
with “incompatible-or-siblings” axioms

0ff -> (not ShutDown) and (not On)
ShutDown -> not On

The other incompatibilities are logical consequences of these two.
Being in a child state implies being in its parent state, expressible by
such (child-implies-parent) axioms as

OkToMovel -> Rodi

In this way we can capture the logic of the in_state predicate with a
decidable theory the number of whose axioms does not grow too much faster
than the number of states in the hierarchy.

14

There are many equivalent ways to formulate such a theory, and certain
formulations may be better tuned for different theorem provers. One strat-
egy that will in some sense always work is this: Let ® be the conjunction of
all the axioms. Then, in order to test whether the formula ¥ is true in the
model, we could test the formula ® — ¥. This strategy has two drawbacks:
The first is that it may be unacceptably inefficient, burdening the theorem
prover with a large formula containing many unnecessary hypotheses. The
second is that the explicit presence of ® is a kind of noise that may make
it harder to interpret the results when analysis indicates that there is a
problem—for example, analysis may return a simplified formula in which
components derived from ® are entangled with those still remaining from
V.

The first difficulty could be partly alleviated by optimizing ¥: We’ll say
that a state foo occurs minimally within the formula @ if foo occurs in
® but no descendants of foo occur in ®. Let ¥’ be the conjunction of all
axioms mentioning either minimal states occurring in ¢ or ancestors of those
minimal states. To test the truth of ® in the model it suffices to test the
truth of ¥/ — ®. As a rule we expect this to be a smaller formula.

The second difficulty will in general require us to exploit details of a
particular tool. Here, for example, is an intelligent encoding of the hierar-
chy within the EVES prover. EVES permits users to add heuristic labels
to axioms, indicating how they are to be used in automated proof steps.
Automatic simplifications rearrange formulas into if-then-else normal forms
and traverse those forms, simplifying as the traversal proceeds. At any point
in the traversal the simplifier has a context of assumptions, which includes
a record of the branches taken in order to reach the present traversal point.
That is, if the traversal is somewhere on the “A” branch of

if foo then A else B

“foo” belongs to the context; but if it’s somewhere on the “B” branch the
context contains “not foo” instead. If the axiom X -> Y is given the heuris-
tic label of a forward rule, then whenever X belongs to the context, Y is
automatically added.

To use EVES efficiently, we want to add forward rules in such a way that,
as nearly as possible, all and only the rules “necessary” to the analysis will
fire. (Getting only the necessary rules to fire is more or less equivalent to
optimizing from ¥ to ¥’. Keeping the effect of those rules in the background,
as context, eliminates the noise.) Our experiments suggest that the following
strategy works well. Add, as forward rules, all axioms in the categories

15

and-parent, incompatible-or-siblings, child-implies-parent. But the rules in
the remaining category, or-parent, are replaced by equivalent forward rules
suggested by the following example. Replace

parent -> childl or child2
by the two axioms

child2
childl

not childi -> parent
not child2 -> parent

As an example, section 7 provides the automatic encoding of the state
hierarchy of figures 2 and 3 into an EVES theory.

4.2 The compatibility table

As already noted, defining which basic transitions are compatible with one
another is a somewhat subtle matter. The definition we have implemented
is described in section 9; and, if n is the number of basic tramsitions in
the model, computing the n x n table requires an O(n®) calculation (via
Warshall’s transitive closure algorithm).

As part of the “core” semantic calculation we store the table in a global
data structure that can be queried by any of the translations. So, for exam-
ple, the translation to a SPIN model generates code initializing a constant
array that represents this table. A SPIN execution must repeatedly con-
sult this array in order to determine which transitions will be taken in each
microstep.

4.3 Requirements for a logical interface

By a “logical interface to RSML” we mean a set of well-analyzed encodings,
like the encoding of the state hierarchy described above, usable as a tool-kit
for representing RSML semantics in a variety of formal tools. This requires
both a priori analysis and experience with the peculiarities of several tools,
s0 as to make the analysis generally useful. The discussion below applies to
theorem-provers, as these have been the main subjects of our experiments.

We have been writing formulas in a kind of typewriter notation, using
“->” for implication, using “or” as an infix operator, etc. The obvious
strategy for communicating with tools using different notations is (speaking
in OO jargon) to implement a fairly general formula class in which each
formula has methods for writing itself in the notation of various tools. Thus,

16

much of the formula generation is done once and for all in the core of the
FMI and much of the task of integrating a new tool with the FMI will
amount to no more than implementing an additional “print” method for
each formula. The PVS encoding of the state hierarchy is done in precisely
this way. The EVES encoding could be done that way as well, but in order
to take advantage of the “forward rule” mechanism, we give the “or-parent”
axioms special treatment.

Note that we want to generate not only formulas, but entities like defi-
nitions, axioms, tactics, etc., of which formulas are only elements; and these
entities may be named, may contain heuristic flags, etc.. depending on the
target tool. It would certainly be desirable if abstract forms of these entities
could be generated once and for all by the core of the FMI.

Presently we are using S-expressions as a simple, reasonably general
abstract representation of formulas. Future work on the FMI should address
the problem of devising a more general abstract logical language. Some work
has already been done on general logical languages. See, for example [4, 3].

5 Internal interface

This section consistently uses the following terminology: a “user” is a user
of the FMI; “development” means integrating a tool into the FMI and a
“developer” is someone trying to perform such an integration. As far as
the phase I prototype is concerned the goal of development is a modest
one: code that accepts an RSML definition in textual format and generates
the preambles and scripts needed to use a formal tool for various forms of
automatic analysis. Our goal in phase I is to show that EVES, PVS, and
SPIN can be systematically integrated in this way.

The “internal interface” is a developer’s view of the FMI. We provide a
developer with two main resources: certain core functions that carry out as
much of the analysis as we can in an abstract way (for example, by generating
formulas that we think a theorem prover will require either as axioms or as
candidate theorems); “templates” for writing any supplementary code that
he needs.

5.1 Ox

Ox [1] is a simple language that allows a developer to add attribute grammar
equations ([6],[7]) to a YACC description of the syntax of RSML, and also to
associate actions with each production. It permits us to declare attributes

17

for each symbol of the grammar and define their values, inductively, in terms
of the values of other attributes from the productions in which that symbol
occurs. For example, the attributes for the state_def symbol, denoting the
definition of a state, include the following:

e code, of type integer, that assigns a unique integer code to each state
e ancestor, a string, that gives the name of its parent state (if any)

e children_imply_parent, a pointer to an S-expression that represents the
“children-imply-parent” axiom for this state

The actions of a production may refer to the attributes defined for the
production and may invoke auxiliary code written in C++. (Ox will also
accept auxiliary code written in C.) Actions define what to do with the
information obtained from the attributes. For example, one action associ-
ated with the state_def production generates the EVES axiom asserting
the children_imply_parent formula as an EVES forward rule. Another action
associated with state_def generates a line of SPIN code which defines the
state name as a synonym for its integer code (using the C-style #define
notation).

The Ox processor produces an evaluator—written in Lex, Yacc, and
C++—which is compilable on a C++ compiler. Execution of the compiled
evaluator proceeds in two stages. The first stage builds a parse tree, finds
an order in which to evaluate attributes, and computes the attributes. The
second performs traversals of the parse tree (in an order specified by the
developer) and executes the actions for each traversal. The actions may be
written in C++4+ and may call on C4++ auxiliary functions as well as the
values of the attributes.

It is thus possible to define the attributes in a clean and simple, essen-
tially functional, style. And the traversal mechanism simplifies the job of
generating the desired formal models.

5.2 The core code

The core of the Ox code we supply comes in two parts. The first, which does
not concern a developer, is a parser for the RSML language. The second is
a set of attributes that define basic static semantic and logical information
that developers will need to exploit. One of our principal Phase I tasks
has been a first cut at deciding what that collection of information and
attributes should be. In addition, we supply C++ classes implementing the

18

basic data types that developers will need—such as the class of S-expressions
and methods for manipulating them.

A note on parsing. We assume that the input text, having been checked
or generated by the RSML front-end, is legal. This permits us to build
our parser in Ox by adapting, and simplifying, RSML source code. A first
lexing pass generates a global data structure containing enough information
to make the next pass (lexing and parsing) unambiguous. Our simplification
consists primarily in gathering the absolute minimum of such information
(granted the assumption that the definition is legal).

5.3 The developer’s template

The developer’s template is a noweb ([10]) file. The suite of noweb tools
provides a simplified variant of Knuth’s web programs, which permit a de-
veloper to write code fragments and documentation in a logical or expository
order and then to generate either compilable code or a printable document
by applying appropriate utilities. The utilities rely on a collection of “mod-
ules” and source code that labels the fragments to indicate which modules
they belong to. The modules can be thought of as the headings and sub-
headings of an outline for the code, and the notangle utility gathers up the
entries within each module to fill in the outline. The attached documen-
tation of the prototype code was produced by processing the noweb source
with notangle, configured to generate INTEX source.

Leaving aside its virtues as a development and documentation tool, we
use noweb to provide a poor man’s version of a menu-driven installation
program that helps systematize some of the developer’s tasks. For example,
the template includes the following kinds of instructions.

¢ In module “Globals”, supply the name of the traversal, declared as an
integer variable initialized to 0.

The developer edits the given template

<<Globals>>=
int *F00* = O;

to replace the placeholder *F00#* with the name of the desired traversal,
for example

<<Globals>>=
int eves = 0;

19

¢ In module “Traversals”, supply an Ox declaration of that variable as
a traversal.

In this case the developer integrating EVES edits the template text by
supplying the phrase preorder eves, stipulating a preorder traversal,
to produce:

<<Traversals>>=
traversal preorder eves

o Define any global state that the translation needs, putting any neces-
sary type definitions in an “Includes” module, and the state itself in
the “Globals” module.

In this case the developer edits the template text by supplying "eves_state.h"
and the declaration of my_eves_state:

<<Include files>>=
#include “"eves_state.h"

<<Globals>>=
eves_state my_eves_state;

And so on. (It would of course be possible to automate this further into a
true installation program, but that hardly seems worth the effort.) All the
files that we ask the developer to edit are noweb files. We expect the devel-
oper to follow the noweb paradigm for filling them in. The auxiliary C++
code (such as the class eves_state) can be created however the developer
likes—written directly on a text editor, for example, or generated by noweb.

The meat of the translation code, of course, is not so trivial. Qur tem-
plate supplies:

e for each grammar symbol, a noweb module in which to declare addi-
tional attributes for that symbol;

o for each production, a module in which to define the attributes so
declared;

o for each production, a module in which to define the traversal actions
for that production.

20

We have already supplied the outline that notangle will use to assemble these
declarations and definitions into appropriate input for Ox. As noted, our
goal is to supply a collection of predefined attributes so rich that little or no
new work needs to be done.

5.4 The traversal code

Our prototype strategy uses the traversal code—which can, in principle, be
arbitrary—to generate yet another noweb file. This is a convenient trick: the
input to formal tools is usually organized in highly stylized ways, and we use
this generated noweb text to provide a multiplexing filter that distributes
pieces into the proper places.

The one piece of real noweb programming developer must do is to define
a “skeleton.” a top-level noweb outline defining the modules of which the
formal model will consist and their internal organization. In the case of
the EVES. for example, that skeleton provides modules for declarations
of state names, for the child-implies-parent rules, for the incompatible-or-
sibling rules, etc. Then, each traversal action must generate EVES text
labeled with the appropriate module name, so that notangle will organize
the output properly.

This organization of the prototype code has proven simple and effective,
and permits relatively simple experimentation with variations in translation
strategies.

6 Results

6.1 RSML semantics

As already noted, we have collaborated with Mats Heimdahl to provide a
better semantic description of RSML, which will be included in [8]. Section 9
contains some additional work on RSML semantics and a discussion of some
open problems.

6.2 Prototype code

The current prototype code parses the complete RSML language and, for
specifications written in a subset of RSML (see section 6.4), defines at-
tributes containing the following semantic information:

e S-expressions encoding the following features of the RSML model:

21

— The state hierarchy (as described in section 4.1).
— The declarations and definitions of RSML constants.
— The declarations and definitions of RSML functions.

— Declarations of RSML input variables.

e S-expressions encoding the following analytical assertions about the

RSML model:

— Each RSML function is well-defined—the table of cases defining
it is exhaustive and exclusive.

— Each conditional state is well-defined—the conditions defining
exit transitions from the state is exhaustive and exclusive.

— Each state event is guaranteed to enable at least one transition.

e The global table defining which pairs of basic transitions are compat-
ible (see section 4.2).

Note: in the logical models (such as EVES and PVS), the basic transi-
tions are currently represented by the way in which they contribute to the
analytical assertions; whereas the SPIN model contains an explicit opera-
tional representation of each basic transition.

The prototype defines traversals for EVES, PVS, and SPIN. The EVES
traversal generates an EVES version of the theory described above and in
section 4.1, and also generates as candidate EVES theorems the list describe
above of analytical assertions about the specification. The PVS traversal
does some but not all of the corresponding things in PVS terms—it was
undertaken as a brief experiment to see how rapidly it could be done, and
little effort would be needed to complete it. The SPIN traversal generates an
executable SPIN model of the specification. (For want of time, this model
dummies out all the conditions governing transitions to the condition TRUE.)

6.3 Systematic integration of tools

Our noweb templates have proven a convenient way to integrate tools to the
RSML front end. The initial set of attributes and actions was defined solely

with EVES in mind, but served quite well to permit a rapid addition of both
PVS and SPIN.

22

We also implemented a number of purely internal tools for generating
large pieces of the necessary templates automatically from the RSML gram-
mar. (These tools guarantee the internal consistency of the templates, and
will make it simple to adapt to changes in RSML.)

Finally, the noweb source makes all the code and its documentation easily
reviewable.

6.4 The RSML fragment

Here is an informal description of the restrictions our prototype code cur-
rently places on RSML specifications (roughly classified according to their
underlying reasons).

To simplify certain parsing problems we currently assume

o All names occurring in the RSML text, other than local variables, are
distinct.

o At most 1,000 names occur in the specification.
o A system has only one component.

Because of unresolved semantic questions we dc not currently provide
(full) support for the following language features:

o arrays of OR-states, arrays of AND-states, and transition busses. Ap-
plying the translators to code that contains these may result in a crash,
or may generate a meaningless model.

e Conditional states. The SPIN code output by a translator encounter-
ing conditional states will not, in general, compile.

o Real literals. The SPIN translation treats them like integers, and
assumes that they have the form {[xxx.0]].

¢ Timeout events and conditions referring to time.
e The expected range and granularity of variables.

For lack of time, we have omitted RSML macros and have used a sim-
plified treatment of RSML variables. We have omitted output variables and
modeled input variables simply as containers for values—a variable should
actually be modeled as a function mapping times to values (i.e., as a collec-
tion of time-value pairs).

23

6.5 Applications

We have spent limited time in experimenting with the results. Some obser-
vations:

EVES and PVS easily handle the model of hierarchical states—i.e., easily
decide propositions making assertions about it. The EVES prover automat-
ically invokes the necessary rules, but to use PVS we must generate a PVS
tactic that invokes the hierarchy axioms as lemmas. (In experiments, that
tactic has been written by hand.)

Reasoning automatically about real number properties presents some
difficulties in EVES, as the EVES library does not contain a real-number
theory. In addition, the EVES heuristics have certain intrinsic weaknesses
for dealing with such things as transitive relations (like < on the reals). Tech-
nically, the limitation is that conditional rules may have only one premise.
PVS is more immediately helpful, as its built-in simplification strategies in-
clude basic real number arithmetic. As noted in section 9.1, however, the
proper RSML semantics for real numbers is unclear; and without a firm
decision on the semantic model it seemed unwise to devote too much time
to worrying about theorem-proving support.

SPIN provides two modes: interactive simulation through a GUI, and
“validation” (i.e., automated model-checking). Brief experiments suggest
that it is impractical to apply interactive simulation to the models we gen-
erate. The problem, we conjecture, is the communications overhead between
the executing model and the GUL Runs in the “validation” mode, for a pre-
scribed sequence of concrete inputs, were much more efficient. However, we
currently generate code that is purely deterministic: In each microstep the
search for a maximal set of compatible enabled transitions proceeds in a
fixed order. A truly non-deterministic search might be much more costly,
though we have not experimented with that. By slightly modifying the gen-
erated code, and at virtually no cost in efficiency, the model could choose
the transitions deterministically but raise a warning if a different choice
would be possible. We could also provide a flag that would permit a choice
between deterministic and non-deterministic models. An interesting appli-
cation of SPIN that we have not been able to investigate is as follows: SPIN
can check temporal logic assertions about the execution of the model, where
the assertions may refer to named control points within the model’s code.
We could generate a set of predefined names for predefined control points
and thereby provide the user with a useful language for making checkable
assertions about a specification.

24

7 The EVES translation

Here is the EVES encoding of the state hierarchy defined in figures 2 and 3.

(function-stub Rod_Control ())
(function-stub Off ())

(function-stub ShutDown ())
(function-stub On ())

(function-stub Temp ())

(function-stub HighTemp ())
(function-stub LowTemp ())

(function-stub Rodl ())

(function-stub JustMovedi ())
(function-stub Up1l ())

(function-stub Downi ())

(function-stub OkToMovel ())
(function-stub Rod2 ())

(function-stub JustMoved2 ())
(function-stub Up2 ())

(function-stub Down2 ())

(function-stub OkToMove2 ())
(function-stub Desired_Temp ())
(function-stub T_Min ())

(function-stub T_Max ())

(function-stub Temp_Gran ())
(function-stub Wait ())

(function-stub Temp_Reading_Timeout ())
(function-stub Temp_Reading_Timeout_2 ())
(function-stub Temp_Reading_Timeout_3 ())
(function-stub Temp_Separation ())
(function-stub Up ())

(function-stub Down ())

(function-stub None ())

(function-stub PrevTempLate ())
(function-stub PrevTempHigh ())
(function-stub PrevTempLow ())
(function-stub TempReportTimeoutLimit ())
(function-stub Rod2_Cannot_Move_Time ())
(function-stub Temperature ())
(function-stub Temp_Status ())
(function-stub Temp_Out ())
(function-stub Rod_1_Setting ())
(function-stub Rod_2_Setting ())

(frule child-implies-parent__10 () (IMPLIES (On) (Rod_Control)))

25

(frule child-implies-parent__11 () (IMPLIES (ShutDown) (Rod_Control)))
(frule child-implies-parent__12 () (IMPLIES (0ff) (Rod_Control)))
(frule child-implies-parent__15 () (IMPLIES (Rod2) (Omn)))
(frule child-implies-parent__16 () (IMPLIES (Rod1) (On)))
(frule child-implies-parent__17 () (IMPLIES (Temp) (On)))
(frule child-implies-parent__19 () (IMPLIES (LowTemp) (Temp)))
(frule child-implies-parent__20 () (IMPLIES (HighTemp) (Temp)))
(frule child-implies-parent__22 () (IMPLIES (OkToMovel) (Rod1)))
(frule child-implies-parent__23 () (IMPLIES (JustMovedi) (Rod1)))
(frule child-implies-parent__25 () (IMPLIES (Downl) (JustMovedi)))
(frule child-implies-parent__26 () (IMPLIES (Upi) (JustMoved1)))
(frule child-implies-parent__28 () (IMPLIES (OkToMove2) (Rod2)))
(frule child-implies-parent__29 () (IMPLIES (JustMoved2) (Rod2)))
(frule child-implies-parent__31 () (IMPLIES (Down2) (JustMoved2)))
(frule child-implies-parent__32 () (IMPLIES (Up2) (JustMoved2)))
(frule parent-implies-children__18 ()

(IMPLIES (On) (AND (Rod2) (Rod1) (Temp)))
)
(frule incompatible-or-sibs__13 ()

(IMPLIES (On) (AND (NOT (ShutDown)) (NOT (0£ff))))
)
(frule incompatible-or-sibs__14 () (IMPLIES (ShutDown) (AND (NOT (0f£)))))
(frule incompatible-or-sibs__21 () (IMPLIES (LowTemp) (AND (NOT (HighTemp)))))
(frule incompatible-or-sibs__24 ()

(IMPLIES (OkToMovei) (AND (NOT (JustMoved1i))))
)
(frule incompatible-or-sibs__27 () (IMPLIES (Downi) (AND (NOT (Up1)NN
(frule incompatible-or-sibs__30 ()

(IMPLIES (OkToMove2) (AND (NOT (JustMoved2))))
)
(frule incompatible-or-sibs__33 () (IMPLIES (Down2) (AND (NOT (Up2)))))
(function-stub Rod_Control~1i ())
(frule not-On->Rod_Control=Rod_Control~1 ()

(IMPLIES (NOT (On)) (= (Rod_Control) (Rod_Control~1)))
)
(frule not-Rod_Control~1->Rod_Control=0On ()

(IMPLIES (NOT (Rod_Control-1)) (= (Rod_Control) (On)))
)
(frule not-ShutDown->Rod_Control~1=0ff ()

(IMPLIES (NOT (ShutDown)) (= (Rod_Control~1) (0ff)))
)
(frule not-0ff->Rod_Control~1=ShutDown ()

(IMPLIES (NOT (0£f)) (= (Rod_Control~1) (ShutDown)))
)

26

(frule not-LowTemp->Temp=HighTemp ()
(IMPLIES (NOT (LowTemp)) (= (Temp) (HighTemp)))
)
(frule not-HighTemp->Temp=LowTemp ()
(IMPLIES (NOT (HighTemp)) (= (Temp) (LowTemp)))
)
(frule not-OkToMoveil->Rodi=JustMovedl ()
(IMPLIES (NOT (OkToMovel)) (= (Rod1) (JustMovedi)))
)
(frule not-JustMoved1->Rod1=0kToMovel ()
(IMPLIES (NOT (JustMoved1)) (= (Rod1) (OkToMove1)))
)
(frule not-Downi->JustMovedi=Up1l ()
(IMPLIES (NOT (Downi1)) (= (JustMovedi) (Up1)))

)
(frule not-Upi->JustMovedi=Downi ()

(IMPLIES (NOT (Up1)) (= (JustMovedi) (Down1)))

)
(frule not-OkToMove2->Rod2=JustMoved?2 ()

(IMPLIES (NOT (OkToMove2)) (= (Rod2) (JustMoved2)))

)
(frule not-JustMoved2->Rod2=0kToMove2 ()
(IMPLIES (NOT (JustMoved2)) (= (Rod2) (OkToMove2)))

)
(frule not-Down2->JustMoved2=Up2 ()
(IMPLIES (NOT (Down2)) (= (JustMoved2) (Up2)))
)
(frule not-Up2->JustMoved2=Down2 ()
(IMPLIES (NOT (Up2)) (= (JustMoved2) (Down2)))

)
(rule top-level-state__1 () (= (Rod_Control) (true)))

8 A SPIN model

This section explains the SPIN model by an example that annotates repre-
sentative fragments of an RSML specification with the corresponding Promela
code. The only alterations we make in the generated code (aside from omis-
sions) are slight reformattings. The Promela code is completely intelligible
to a human reader (thanks to careful use of the SPIN preprocessor).

The Promela code begins with a trivial preamble defining TRUE to be 1

and FALSE to be 0.
We assume that there is only one component to the system, in this case

27

declared by

COMPONENT Reactor_One

The component name will be the basis for mnemonic names denoting,
the main Promela process, the channel on which inputs are received, etc.

8.1 The state hierarchy
The RSML state hierarchy is defined by:

OR_STATE Rod_Control DEFAULT Off :
ATOMIC Off :
ATOMIC ShutDown :
AND_STATE On :
OR_STATE Temp DEFAULT HighTemp:
ATOMIC HighTemp :
ATOMIC LowTemp :
END OR_STATE
OR_STATE Rodl DEFAULT JustMovedl :
OR_STATE JustMovedi DEFAULT Upil :
ATOMIC Up1 :
ATOMIC Downi :
END OR_STATE
ATOMIC OkToMovel :
END OR_STATE
OR_STATE Rod2 DEFAULT OkToMove2 :
OR_STATE JustMoved2 DEFAULT Up2 :
ATOMIC Up2 :
ATOMIC Down2 :
END OR_STATE
ATOMIC OkToMove2 :
END OR_STATE
END AND_STATE
END OR_STATE

This differs from the example of figures 3 and 2 only in eliminating the
conditional state, which the SPIN translation does not currently support.
In Promela we do the following things:

¢ Declare a boolean array state of length state_count (the number of
states), which represents the global configuration of states.

e Define state names as indexes into that array.

28

e Recursively define, for each state foo, the following actions:

#define

— set_parent_foo, which sets state[foo] and all its ancestors to
TRUE.

— leave_foo, which sets state[foo] and all its children to FALSE
— enter_foo, which sets to TRUE: state[foo], all its ancestors, and
the “default” children of foo

state_count 17

bool state[state_count];

#define
#define
#define

#define
#tdefine
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define

#define

0ff O
ShutDown 1
HighTemp 2

set_parent_Rod_Control state[Rod_Control]l=TRUE

set_parent_Off state[Rod_Control]=TRUE; set_parent_Rod_Control
set_parent_ShutDown state[Rod_Control]=TRUE; set_parent_Rod_Control
set_parent_On state[Rod_Control]=TRUE; set_parent_Rod_Control
set_parent_Temp state[On]=TRUE; set_parent_On

set_parent_HighTemp state[Temp]=TRUE; set_parent_Temp

leave_O0ff state[Off]=FALSE

leave_ShutDown state[ShutDown]=FALSE

leave _HighTemp state[HighTemp]=FALSE

leave_LowTemp state[LowTemp]=FALSE

leave_Temp state[Temp]=FALSE; leave_LowTemp; leave_HighTemp

leave_Rod_Control state[Rod_Control]=FALSE; leave_On; \
leave_ShutDown; leave_Off

enter_0ff set_parent_Off; state[0ff]=TRUE

enter_ShutDown set_parent_ShutDown; state[ShutDown]=TRUE
enter_HighTemp set_parent_HighTemp; state[HighTemp]=TRUE
enter_LowTemp set_parent_LowTemp; state[LowTemp]=TRUE
enter_Temp set_parent_Temp; state[Temp]=TRUE; enter_HighTemp
enter_Upl set_parent_Upl; state[Up1]=TRUE

enter_Rod_Control set_parent_Rod_Control; \
state[Rod_Control]=TRUE; enter_Off

29

8.2 Constant declarations

We make the simplifying assumption that all constants are of type integer,
thus an RSML declaration such as

CONSTANT Desired_Temp :
VALUE : 400.0
END CONSTANT

becomes the following trivial Promela code:

#define Desired_Temp 400

8.3 [Events, input variables, and input interfaces

The event, in variable, and in interface declarations such as

EVENT Power_On STATE;
EVENT Power_0Off STATE;

EVENT Rodi_Down INTERFACE;
EVENT Rodi_Up INTERFACE;

EVENT Set_Rod1l VARIABLE;
EVENT Set_Rod2 VARIABLE;

IN_VARIABLE Temperature :
TYPE : NUMERIC
EXPECTED_MIN : 0.0
EXPECTED_MAX : 100.0
MIN_GRAN : 1.0
MAX_GRAN : 1.0

END IN_VARIABLE

IN_VARIABLE Temp_Status :
TYPE : NUMERIC
EXPECTED_MIN : 0.0
EXPECTED_MAX : 100.0
MIN_GRAN : 1.0
MAX_GRAN : 1.0

END IN_VARIABLE

IN_INTERFACE OnButton :

30

SOURCE : EXTERNAL

TRIGGER : RECEIVE ()

SELECTION : TRUE

ACTION : Power_On
END IN_INTERFACE

IN_INTERFACE OffButton :
SOURCE : EXTERNAL
TRIGGER : RECEIVE ()
SELECTION : TRUE
ACTION : Power_Off
END IN_INTERFACE

IN_INTERFACE TempSensor :
SOURCE : EXTERNAL
TRIGGER : RECEIVE (Temp_Status, Temperature)
SELECTION : TRUE
ACTION : Temp_Report_Event
END IN_INTERFACE

IN_INTERFACE Testing :
SOURCE : Reactor_Ome
TRIGGER : RECEIVE (Temperature)
SELECTION : TRUE
ACTION : Temp_Report_Event
END IN_INTERFACE

are modeled by Promela code which does the following:

e Declare the type of the inputs to be received and a channel for receiv-
ing them. The name of the channel is derived from the name of the
component. The input type has a boolean component for each inter-
face (representing receipt of an input at an interface) and a byte-sized
component, representing the data received.

e Declare a boolean array, event, of length event_count (the number
of events), representing the set of currently “active” events.

e Define event names as indices into that array.

typedef In_Interface_Reactor_One{
byte Temperature;

31

byte Temp_Status;
bool OnButton;
bool OffButton;
bool TempSensor;
bool Testing;

};

chan In_Channel Reactor_One = [1] of {In_Interface_Reactor_One};

#define event_count 12
bool event[event_count];

#define Power_On O
#tdefine Power_Off 1
#define ShutDown_Event 2

Input variables are represented as follows: The main Promela process will
declare a local variable, input, of type In_Interface Reactor_One, which
receives the values transmitted through the interface. Thus input.Temperature,
for example, could be used to model the in variable Temperature. How-
ever, we find it convenient to be sightly more roundabout: We will model
the in variable Temperature, for example, by declaring a local variable
Temperature of the main process and copying the value of input . Temperature
into it.

8.4 Output events, variables, and interfaces

Output events, output variables, and interfaces are currently omitted.

8.5 Functions and macros

Functions and macros are currently omitted.

8.6 Transitions
Here are two sample transition definitions:

TRANSITION t2 FROM Off TO On :
TRIGGER : Power_On
CONDITION : TRUE
ACTION

END TRANSITION

32

TRANSITION t3 FROM On TO ShutDown :

TRIGGER : Temp_Report_Event

CONDITION : TABLE
Temperature > T_Max N
Temperature < T_Min . T ..
Temperature != PrevTempHigh() : .. T .
Temperature != PrevTempLow() EE

END TABLE

ACTION : ShutDown_Event

END TRANSITION
In the Promlea code we do the following things:

e Declare a boolean array, trans_enabled, of length transition.count
(the number of transitions), representing the set of currently enabled
transitions; and a similar array, selected representing the set of cur-
rently selected transitions.

o Declare boolean array, compat, representing the (constant) table spec-
ifying which pairs of transitions are compatible. (As Promela sup-
ports only one-dimensional arrays it’s convenient to introduce a macro,
compatible(i,j), defining the indexing scheme whereby this array
can be thought of as two-dimensional.)

e Define for each transition Foo

— cond_Foo, representing the enabling condition for the transition.
(This is currently dummied out to TRUE. Note that RSML permits
conditions that are not executable.)

— enabled Foo defining what it means for Foo to be enabled: the
current configuration must contain the state at the tail of the
arrow, the triggering event must be currently active, and the
condition must be true; ’

~ take_Foo defining the effect of taking transition Foo: we exit its
“leaving” state enter its target state, and “consume” the trigger-
ing event; we also deselect Foo;

— action Foo defining the action taken: the events generated by
the transition become active.

#define transition_count 16

33

bool trans_enabled[transition_count];

bool selected[transition_count];

#define t_count_squared 256

bool compat[t_count_squared];

#define compatible(i,j) compat[i * tramsition_count + j]

#define t2 1
#define cond_t2 TRUE
#define enabled_t2 state[0ff] && event[Temp_Report_Event] &% cond_t2
#define take_t2 selected[t2]=FALSE; leave_0ff; enter_On; \
event [Temp_Report_Event]=FALSE
#define action_t2

#define t3 2

#define cond_t3 TRUE

#define enabled_t3 state[On] && event[Temp_Report_Event] && cond_t3

#define take_t3 selected[t3]=FALSE; leave_On; enter_ShutDown; \
event [Temp_Report_Event]=FALSE

#define action_t3 event[ShutDown_Event]=TRUE

8.7 The main Promela process

So far we have generated nothing but declarations and definitions. The
Promela process representing Reactor_One is an infinite loop that accepts an
input from its input channel, executes the resulting sequence of microsteps
and repeats. The outline is:

?

proctype Reactor_One() {
/% Declare local variables */
/* Initialize arrays */
/* Enter the top-level state */
enter_Rod_Control;
/% Outer loop */

end: do /* Top of outer loop */

34

: In_Channel_Reactor_One 7 input;
atomic{
do /* Top of microstep loop */
/* Perform sequence of microsteps */
od; /* End of micro step loop */
}
/* Perform output actions */

od /* End of outer loop */
}

The label “end:” prefacing the initial “do” tells SPIN not to report an
error when the main process blocks at this point because the driver process
has stopped sending input through In_Channel Reactor_One.

Placing the code for a step inside “atomic” command instructs SPIN to
treat it as an atomic step.

8.7.1 Declare local variables

The local variables consist of a loop-counter, a boolean continue microloop
that is used to determine when the sequence of microsteps is complete,
a variable input to receive external inputs, and models of the RSML in
variables into which values of input will be copied.

int i; /* All-purpose loop counter */
bool continue_microloop;

/* Local variable that receives input */
In_Interface_Reactor_One input;
/* Models for RSML in variables */

int Temperature;
int Temp_Status;

35

8.7.2 Initialize arrays

The components event, selected, and trans_enabled must be set to FALSE
initially and at the top of each step. The initial values are taken care of
automatically, because all Promela variables are initialized to 0.

We must explicitly initialize the constant array compat, but need only
bother to set its non-0 values:

d_step{
compatible(4,8) = TRUE;
compatible(4,9) = TRUE;
compatible(4,10) = TRUE;

compatible(15,10) = TRUE;
compatible(15,11) = TRUE;
compatible(15,12) = TRUE;

Bracketing these statements with the d_step indication tells SPIN to
treat this as a deterministic atomic step.

8.7.3 Perform sequence of microsteps
Each microstep consists of the following steps:

e Determine the effect of the inputs (setting event and the values of the
input variables).

¢ Determine which transitions are enabled (setting trans_enabled).

e Choose selected transitions (setting selected to a maximal consistent
subset of the enabled transitions).

e Take the selected transitions.
e Reset arrays.

o Decide whether the microstep is finished.

Effect of the inputs The boolean components of input indicate which
interface received a message. (According to RSML semantics we can assume
that precisely one of these is set.) The effect of an input to activate certain
events (setting components of event to true) and to set the values of the
local variables representing RSML input variables.

36

if
:: input.OnButton && TRUE -> event[Power_On]=TRUE;
:: input.OffButton && TRUE -> event[Power_0ff]=TRUE;

:: input.TempSensor && TRUE -> event[Temp_Report_Event]=TRUE;
Temp_Status = input.Temp_Status;

:: input.Testing && TRUE -> event[Temp_Report_Event]=TRUE;
Temperature = input.Temperature;

fi;

Enabling transitions

trans_enabled[t1]
trans_enabled[t2]

enabled_t1;
enabled_t2;

Choose selected transitions The code for doing selecting transition is
straightforward: nested loops that ask, of each transition in turn, whether
it is compatible with all the transitions selected so far. The order in which
transitions are considered is deterministic, for efficiency’s sake, but could be
made non-deterministic:

i=0;
do
:: 1 < transition_count ->

if
:: trans_enabled[i] && ! selected[i] —>
int j = 0;
selected[i] = TRUE;
do
if
it j < transition_count ->
if
:: selected[j] && ! compatible(i,j) ->
selected[i] = FALSE; break
11 else -> skip
£fi;

37

:: else -> skip
fi;
j++;

od;

: else -> skip
£fi;
i++;
:: else -> break
od;

Take the selected transitions We can take the transitions, sequentially,
in any order, so we choose an order deterministically:

if

:: selected[t1] -> take_t1; action_t1i
:: else —> skip

fi;

if

:: selected[t2] -> take_t2; action_t2
:: else -> skip

fi;

Reset arrays We must begin each microstep with the arrays trans_enabled
and selected set to FALSE. All selected transitions are taken, and taking

them deselects them, so selected is automatically reset.
We must reset trans_enabled explicitly:

i=0;

do
:: i < transition_count -> trans_enabled[i]=FALSE; i++
: else -> break;

od;

Acting on an event (e.g., taking a transition) also “consumes” its trig-
gering event (setting the appropriate component of event to FALSE) and
it is a semantic error for any events to be “unconsumed” at the end of a
microstep. We do not currently test for this error.

Quit the sequence of microsteps? The microstep sequence is done if
and only if no new state events are active.

38

continue_microloop =

event [Power_On] ||

event [Power_Off] ||}

event [ShutDown_Event] ||
event [Temp_Report_Event] ||
event [TempHigh_Event] ||
event [TempLow_Event] ||
FALSE;

/* The break in this next statement quits the microloop*/

if
:: continue_microloop = FALSE -> break
11 else -> skip
fi;
The final “FALSE” in the assignment to continue microloop is a conve-
nient way to handle the pathological case in which there are no state events.

8.7.4 Perform output actions

Currently, we do not model any output actions. As with the “take” actions.
these should consume the events that trigger them. Therefore, in the absence
of semantic errors, all components of event will be set to FALSE at the end
of this and the next step will begin with all of the arrays event, selected,
and trans_enabled properly initialized.

8.8 The driver and the initial process

We run the main process in parallel with a driver that supplies inputs. The
user supplies a body for the driver:

proctype Driver () {
/* User-supplied body */
}

init { run Reactor_One() ;
run Driver() }

39

9 Semantic questions in RSML

9.1 Real numbers

RSML input variables range over real numbers—sensor values, for example—
and RSML functions are defined using basic arithmetical operations over
them. But how should we model the range of these variables and the seman-
tics of the arithmetical operations? There is no formal problem in stipulating
that the model is simply the mathematical real numbers and real number
operations; but, if so, we have a problem relating those specifications to the
behavior of computations intended to represent them.

If variables are modeled as the mathematical real numbers, then the two
conditions X =Y, X/2 # Y/2 form an exhaustive and exclusive pair, as a
theorem-prover would testify. But it does not follow that precisely one of
the two corresponding executable comparison operations will always yield
TRUE. Depending on the precise implementation details (not only the details
of the source code but those of the underlying mathematical hardware) it
is quite possible to have situations in which both yield FALSE. In this case,
it’s not clear whether the mathematical analysis is of much use.

One possible response is to model variables with the mathematical reals,
and to implement within the RSML tools automatic code-generation that
implements the conditions as executable expressions guaranteed to satisfy
a property such as the following: Evaluation of at least one condition will
always yield TRUE; and more than TRUE result will only arise in certain well-
defined boundary states. It would then be up to users to establish that,
in those boundary states, the response dictated by taking any of the TRUE
branches would be acceptable.

Other choices are possible, and the issue is at least as much a design
problem as it is a mathematical one.

9.2 Basic transitions

So far we have informally said that an arrow defines a basic transition,
and that a basic transition maps configurations to configurations.! Both
of these informal understandings need further explanation. We assume that
the reader is familiar with the terminology of the paper [8], which is included
with this report as an appendix—in particular the notion of parallel states

'It’s irrelevant to the present discussion that transitions may also generate events.

40

and of a consistent set of states. Following that paper we use z1y to mean
that z and y are parallel states. In what follows

e an element of StateSet is any set of states;

o an element of Config is any maximal consistent sets of states.

9.2.1 Legal arrows

We first note that not all arrows represent intuitively sensible transitions.
Consider the state hierarchy defined in figures 2 and 3. An arrow from one
state to a parallel sibling, such as from OkToMovel to OkToMove2, certainly
seems intuitively puzzling; as does an arrow that leaps to one of a set of par-
allel siblings, such as an arrow from 0ff to Rod2. Such leaps are analogous
to goto statements that do not respect the block structure of a language.
Assigning a meaning to these leaps by brute force is possible, but seems
contrary to the intention of a specification language, whose whole point is
to be as clear as possible.

We therefore propose some “legality” rules that place reasonable, stat-
ically determinable, limits on the the kinds of arrows permitted. Further
terminology:

o A component is a child of an AND-state.
e comp(z) = min{z|z < z and z is a component}

Note that, by the definition of min, if there is no component z > z,
comp(z) returns the top-level state (in our example, the state Rod_Control).
We will be applying comp()only to OR-states, so unless z is the top-level
state, comp(z) > z.

The first legality rule forbids jumping into a parallel components from
outside. Formally,

Legality rule 1:

An arrow from z to y is illegal unless = < comp(y).

It also seems somewhat puzzling to allow an arrow whose source or target
is a component. Hence

Legality rule 2:

An arrow from z to y is illegal if or y is a component.

41

From a formal point of view, rule 2 seems less important than rule 1.

We will say that an arrow from « to y is legal if z and y satisfy rules 1
and 2.

9.2.2 The map defined by an arrow

We'll use 2 — y to denote an arrow from z to y, and A > B to denote the
set of partial mappings from A to B. We next associate each arrow z — Yy
with a mapping

[z,y] : Config 5 StateSet

and which, if z and y are properly restricted, guarantees that the output
values of [z, y] are really elements of Config, and not just of StateSet.

Intuitively, [z, y](A) should be defined when z € A, and it represents the
act of “leaving” x and “entering” y. As a first, approximation, then, when
defined, the value of [z, y](A) should be obtainable by deleting « and any of
its children from A, and adding y and some appropriate set of its children
to the result (or something close to that). This follows the prescriptions
of [8]. Things are not quite that simple, as can be seen by considering some
examples: Downl — OkToMovel must exit not only Down1 but also its parent
JustMoved1. Similarly, the arrow OkToMovel — Downl must enter not only
Down1 but also JustMovedi.

Note that the presence of conditional states complicates this picture,
since it means we cannot fix a single set of states that a transition to a
condition state actually enters. For now conditional states are ignored and
further discussion is deferred to section 9.4.

We list some technical definitions and lemmas (and will indicate which
there has been time to prove, and which currently remain plausible conjec-
tures):

o w(z) = {21 > 2}
e down(z) = {z|z < z}

e If z is not a component, default(z) is that subset of down(z) that is
chosen by default. (This is easily formalized.)

We will stipulate that [z, y] enters the states in up(y) U default(y). This
takes care of the difficulties noted in example 0kToMovel — Downi. Stipu-
lating that [z,y] leaves the states in down(z) is not good enough—e.g., it
doesn’t deal with the example Down1 — OkToMovel—because leaving z for

42

y may imply leaving other states as well. Hence the next, quite technical,
definition of leaving(z, y):

o If r <y, leaving(z,y) =y

o Otherwise, leaving(z,y) is the unique z’ such that

z < 2’ and 2’ is a child of max(x,y)

Finally, we can make the desired definitions, of the source and destination
sets of an arrow z — y

o Src(z,y) = down(leavingzy)
o Dest(z,y) = up(y) U default(y)

Accordingly, [z,y]: StateSet %, StateSet is the partial map defined as
follows:

e The domain of [z,y]is {S € Config|z € S}
e The value of [z,9](5) is

(S — (Sre(z,y) U down(y))) U Dest(z,y)

Here is the main technical result, which applies to arbitrary z and y (not
just to z and y such that z — y is legal); and the proof, which we omit, is
surprisingly annoying.

Lemma 1 If S is consistent, z € S, and not z Ly, then [z,y](S) is consis-
tent.

Lemma 2 If x — y satisfies legality rule 1, then z Ly.

The lemma does not claim that [z,y](S) is an element of Config—i.e.,
that it is a mazimal consistent set. From the formal point of view that
means that there is a hole in this development. Here are some conjectures
on how the picture might be completed.

Define “strongly nonparallel” as follows:

e z 4y means that for all y < z, not ylz

43

This is not a symmetric notion, though obviously z 4 y implies not zly.
We can form a half-hearted conjecture:

Conjecture 3 Ifz 4y then the output values of [z, y] are elements of Con-
fig.
This conjecture gains some interest from the trivial fact that:

Lemma 4 If z — y satisfies legality rule 1, then z - y.

9.3 Compatibility of basic transitions

Section 9.2 makes a reasonable beginning at defining the semantics of basic
transitions. The paper [8] defines the compatibility of two basic transitions
(and, by an easy extension, of any set of them) as follows: t; and t, are
compatible iff they are can be composed in either order, and that composi-
tion yields the same result in either order. In what follows we will call this
notion H-compatibility. If some set of transitions is H-compatible it is easy
to explain the semantics of “taking them all simultaneously”—we simply
apply them sequentially, in any order.

This is a reasonable definition with some possibly counterintuitive con-
sequences. We use illustrations, once again, from figure 2. Regarded as
maps, the two arrows OkToMovel — Upl are identical—but they are H-
incompatible. They cannot be sequentially composed because the range
of each is disjoint from the domain of the other. For the same reason, this
semantics does not support one of the common explanations of a hierarchi-
cal transition—namely, the claim that arrows entering or leaving non-atomic
states are merely shorthands for sets of arrows between atomic states. Sup-
pose we tried to define arrow 0ff — On as a shorthand for simultaneously
taking the set of atomic transitions consisting of 0ff — Up2, Off — Upi,
and (the conditional state C gives us a problem) either 0ff — HighTemp
or 0ff — LowTemp. This fails because these arrows are H-incompatible—
once again, they can’t be sequentially composed. The semantics of H-
compatibility means that high-level arrows (entering or leaving non-atomic
states) are emphatically not reducible to atomic arrows. That does not
necessarily mean that something is “wrong.” It is simply a methodological
choice.

We adapt slightly the methods of [8] by noting that they permit us
to adopt any definition of compatibility that is at least as strong as H-
compatibility. So, we define C to be a compatibility if it is a set of sets of
transitions with the following properties

44

e 77 € C and T, C Ty implies T, € C.
o Every element of C is an H-compatible set of transitions.

Which compatibility to choose is a methodological matter. For method-
ological and mathematical reasons, and for efficiency’s sake, we propose the
following definitions. First, define a notion of parallelism between pairs of
basic transitions:

(21 = y1)L(z2 — yo) iff zy L2 and y1 Ly

We define C to be the set of all sets T of legal basic transitions such that
forall t;,t; € T', t; Lt;. We have not had time to prove the following lemma,
which seems clear:

Conjecture 5 C is a compatibility.

Using C as the underlying notion of compatibility seems to make simu-
lation about as efficient as it could hope to get, since it reduces the test for
compatibility to a pairwise test. This is the notion of compatibility that we
are implementing in the SPIN translation.

9.4 (Conditional states

The intuitive semantics of a conditional state is that it is never part of the
configuration—nominally entering a conditional state requires immediately
taking a transition that leaves it. If no exiting transition is enabled, the
specification contains a semantic error.

Some complexities are immediately apparent. First is the possibility of
a loop among the exit transitions of conditional states. (Speaking oper-
ationally, that would mean that an individual microstep—as opposed to a
sequence of microsteps—would fail to terminate.) Second, if we are following
a (non-looping) sequence of conditional exits, how do we define the states
in which the conditions on the exit transitions are, successively, evaluated?
Without conditional states the situation is clear: The enabled transitions
are determined solely by the state at the beginning of the microstep. If one
of these transitions leads to a conditional state and involves further con-
ditional transitions, it seems that the intermediate states in this sequence
would become visible and would be the states in which the exit conditions of
successive conditional transitions are to be evaluated. This has at least the
potential for increasing both the conceptual and computational complexity

45

of defining a compatible set of transitions and its result. Presumably, we
would need some set of restrictions on the use of conditional transitions to
keep these costs within reason.

References

(1]

2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Kurt M. Bischoff. Design, implementation, use, and evaluation of Ox:
an attribute grammar compiling system based on Yacc, Lex, and C.
Technical Report TR92-30, Computer Science Dept., Iowa State Uni-
versity, Ames, Iowa, December 1993.

D. Craigen, S.G. Gerhart, and T.J. Ralston. An international survey
of industrial applications of formal methods. Technical Report NIST
GCR 93/626, NIST, 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213~
248, 1993.

J.D. Guttman. A proposed interface logic for verification environments.
Technical Report M91-19, The MITRE Corporation, 1991.

D. Harel. Statecharts: a visual formalism for complex systems. In The
Science of Computer Programming, volume 8, pages 231-274, 1987.

D.E. Knuth. Semantics of context-free languages. Math. Syst. Theory,
2(2):127-145, June 1968.

D.E. Knuth. Semantics of context-free languages: Correction. Math.
Syst. Theory, 5(1):95-96, March 1971.

Nancy G. Leveson and Mats Per Erik Heimdahl. Completeness and
consistency in hierarchical state-based requirements. To appear in IEEE
Transactions on Software Engineering.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements specification for process-control sys-
tems. IEEE Transactions on Software Engineering, 20(9):684-707,
September 1994.

Norman Ramsey. Literate programming simplified. IEEE Software,
pages 97-105, Septemger 1994.

46

[11]) Brian Selic, Garth Gullekson, and Paul T. Ward. Real-time object-
oriented modeling. John Wiley & sons, 1994.

47

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

" " " — i i i iewing i i hing existing data sources,

i rden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searc s,

P:z:::mﬁ:ingw:;\taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

?olleaion of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Report55631215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) {2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
12 April 1996 Final Report 18-0ct-95 to 12-Apr-96
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Cooperating Formal Methods
Final Report N00014-95-C-0349

6. AUTHOR(S)

David Guaspari

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. :gﬁz%l;hﬂsaﬁ%GANllATION
Odyssey Research Associates, Inc.
301 Dates Drive
Ithaca, NY 14850-1326 ORA-TM-96-0019

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Office of Naval Research AGENCY REPORT NUMBER
800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTICN CODE

A mlsndted relraemr

13. ABSTRACT (Maximum 200 words)
Formal methods research has developed a variety of mathematical tools and
techniques applicable to the development of software systems, but they are
greatly underused. The reasons include the limited mathematical backgrounds
of many end-users and developers; idiosyncratic support tools; lack of attention
to technology transfer. We have developed a prototype formal methods interface
(PMI) that permits different kinds of users, with different degrees of expertise,
to cooperate in applying formal methods to define, explore, and analyze system
designs and specifications. Systems are specified in RSML, a mixed graphical

automated analysis of certain semantic questions about an RSML specification --
e.g., the question of whether the specified state machine can respond to every
input. It does so by generating a representation of each question within the
formalism of various formal analysis tools. The FMI can easily be linked to a
variety of formal tools, as we have shown by rapidly incorporating the EVES and
PVS theorem provers, and the SPIN model checker.

and textual notation for defining state machines. The FMI allows a user to perfornj

14, SUBJECT TERMS . 15. NUMBER OF PAGES
47

Formal methods, formal specification, automated theorem

16. PRICE CODE
proving, model checking.

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified None

17, SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION] 20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 §tanc.!ar'd Form _2.98_,(,Rﬁv‘ 2-89)

